3.453 \(\int \cot ^5(c+d x) (a+b \tan (c+d x))^4 \, dx\)

Optimal. Leaf size=141 \[ -\frac {5 a^3 b \cot ^3(c+d x)}{6 d}+\frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}+\frac {4 a b \left (a^2-b^2\right ) \cot (c+d x)}{d}+4 a b x \left (a^2-b^2\right )-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {\left (a^4-6 a^2 b^2+b^4\right ) \log (\sin (c+d x))}{d} \]

[Out]

4*a*b*(a^2-b^2)*x+4*a*b*(a^2-b^2)*cot(d*x+c)/d+1/4*a^2*(2*a^2-11*b^2)*cot(d*x+c)^2/d-5/6*a^3*b*cot(d*x+c)^3/d+
(a^4-6*a^2*b^2+b^4)*ln(sin(d*x+c))/d-1/4*a^2*cot(d*x+c)^4*(a+b*tan(d*x+c))^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3565, 3635, 3628, 3529, 3531, 3475} \[ \frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}+\frac {4 a b \left (a^2-b^2\right ) \cot (c+d x)}{d}+\frac {\left (-6 a^2 b^2+a^4+b^4\right ) \log (\sin (c+d x))}{d}+4 a b x \left (a^2-b^2\right )-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^4,x]

[Out]

4*a*b*(a^2 - b^2)*x + (4*a*b*(a^2 - b^2)*Cot[c + d*x])/d + (a^2*(2*a^2 - 11*b^2)*Cot[c + d*x]^2)/(4*d) - (5*a^
3*b*Cot[c + d*x]^3)/(6*d) + ((a^4 - 6*a^2*b^2 + b^4)*Log[Sin[c + d*x]])/d - (a^2*Cot[c + d*x]^4*(a + b*Tan[c +
 d*x])^2)/(4*d)

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3565

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3635

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(c^2*C - B*c*d + A*d^2)*
(c + d*Tan[e + f*x])^(n + 1))/(d^2*f*(n + 1)*(c^2 + d^2)), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x
])^(n + 1)*Simp[a*d*(A*c - c*C + B*d) + b*(c^2*C - B*c*d + A*d^2) + d*(A*b*c + a*B*c - b*c*C - a*A*d + b*B*d +
 a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] &&
NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \cot ^5(c+d x) (a+b \tan (c+d x))^4 \, dx &=-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^4(c+d x) (a+b \tan (c+d x)) \left (10 a^2 b-4 a \left (a^2-3 b^2\right ) \tan (c+d x)-2 b \left (a^2-2 b^2\right ) \tan ^2(c+d x)\right ) \, dx\\ &=-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^3(c+d x) \left (-2 a^2 \left (2 a^2-11 b^2\right )-16 a b \left (a^2-b^2\right ) \tan (c+d x)-2 b^2 \left (a^2-2 b^2\right ) \tan ^2(c+d x)\right ) \, dx\\ &=\frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^2(c+d x) \left (-16 a b \left (a^2-b^2\right )+4 \left (a^4-6 a^2 b^2+b^4\right ) \tan (c+d x)\right ) \, dx\\ &=\frac {4 a b \left (a^2-b^2\right ) \cot (c+d x)}{d}+\frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot (c+d x) \left (4 \left (a^4-6 a^2 b^2+b^4\right )+16 a b \left (a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=4 a b \left (a^2-b^2\right ) x+\frac {4 a b \left (a^2-b^2\right ) \cot (c+d x)}{d}+\frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\left (a^4-6 a^2 b^2+b^4\right ) \int \cot (c+d x) \, dx\\ &=4 a b \left (a^2-b^2\right ) x+\frac {4 a b \left (a^2-b^2\right ) \cot (c+d x)}{d}+\frac {a^2 \left (2 a^2-11 b^2\right ) \cot ^2(c+d x)}{4 d}-\frac {5 a^3 b \cot ^3(c+d x)}{6 d}+\frac {\left (a^4-6 a^2 b^2+b^4\right ) \log (\sin (c+d x))}{d}-\frac {a^2 \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.37, size = 147, normalized size = 1.04 \[ \frac {-3 a^4 \cot ^4(c+d x)-16 a^3 b \cot ^3(c+d x)+6 a^2 \left (a^2-6 b^2\right ) \cot ^2(c+d x)+48 a b \left (a^2-b^2\right ) \cot (c+d x)-6 \left (-2 \left (a^4-6 a^2 b^2+b^4\right ) \log (\tan (c+d x))+(a-i b)^4 \log (\tan (c+d x)+i)+(a+i b)^4 \log (-\tan (c+d x)+i)\right )}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^4,x]

[Out]

(48*a*b*(a^2 - b^2)*Cot[c + d*x] + 6*a^2*(a^2 - 6*b^2)*Cot[c + d*x]^2 - 16*a^3*b*Cot[c + d*x]^3 - 3*a^4*Cot[c
+ d*x]^4 - 6*((a + I*b)^4*Log[I - Tan[c + d*x]] - 2*(a^4 - 6*a^2*b^2 + b^4)*Log[Tan[c + d*x]] + (a - I*b)^4*Lo
g[I + Tan[c + d*x]]))/(12*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 162, normalized size = 1.15 \[ \frac {6 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{4} - 16 \, a^{3} b \tan \left (d x + c\right ) + 3 \, {\left (3 \, a^{4} - 12 \, a^{2} b^{2} + 16 \, {\left (a^{3} b - a b^{3}\right )} d x\right )} \tan \left (d x + c\right )^{4} - 3 \, a^{4} + 48 \, {\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{3} + 6 \, {\left (a^{4} - 6 \, a^{2} b^{2}\right )} \tan \left (d x + c\right )^{2}}{12 \, d \tan \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^4,x, algorithm="fricas")

[Out]

1/12*(6*(a^4 - 6*a^2*b^2 + b^4)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^4 - 16*a^3*b*tan(d*x + c
) + 3*(3*a^4 - 12*a^2*b^2 + 16*(a^3*b - a*b^3)*d*x)*tan(d*x + c)^4 - 3*a^4 + 48*(a^3*b - a*b^3)*tan(d*x + c)^3
 + 6*(a^4 - 6*a^2*b^2)*tan(d*x + c)^2)/(d*tan(d*x + c)^4)

________________________________________________________________________________________

giac [B]  time = 7.96, size = 335, normalized size = 2.38 \[ -\frac {3 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 32 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 144 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 480 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 384 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 768 \, {\left (a^{3} b - a b^{3}\right )} {\left (d x + c\right )} + 192 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 192 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + \frac {400 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2400 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 400 \, b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 480 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 384 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 144 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 32 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a^{4}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^4,x, algorithm="giac")

[Out]

-1/192*(3*a^4*tan(1/2*d*x + 1/2*c)^4 - 32*a^3*b*tan(1/2*d*x + 1/2*c)^3 - 36*a^4*tan(1/2*d*x + 1/2*c)^2 + 144*a
^2*b^2*tan(1/2*d*x + 1/2*c)^2 + 480*a^3*b*tan(1/2*d*x + 1/2*c) - 384*a*b^3*tan(1/2*d*x + 1/2*c) - 768*(a^3*b -
 a*b^3)*(d*x + c) + 192*(a^4 - 6*a^2*b^2 + b^4)*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 192*(a^4 - 6*a^2*b^2 + b^4)*
log(abs(tan(1/2*d*x + 1/2*c))) + (400*a^4*tan(1/2*d*x + 1/2*c)^4 - 2400*a^2*b^2*tan(1/2*d*x + 1/2*c)^4 + 400*b
^4*tan(1/2*d*x + 1/2*c)^4 - 480*a^3*b*tan(1/2*d*x + 1/2*c)^3 + 384*a*b^3*tan(1/2*d*x + 1/2*c)^3 - 36*a^4*tan(1
/2*d*x + 1/2*c)^2 + 144*a^2*b^2*tan(1/2*d*x + 1/2*c)^2 + 32*a^3*b*tan(1/2*d*x + 1/2*c) + 3*a^4)/tan(1/2*d*x +
1/2*c)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.39, size = 180, normalized size = 1.28 \[ -\frac {a^{4} \left (\cot ^{4}\left (d x +c \right )\right )}{4 d}+\frac {a^{4} \left (\cot ^{2}\left (d x +c \right )\right )}{2 d}+\frac {a^{4} \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {4 a^{3} b \left (\cot ^{3}\left (d x +c \right )\right )}{3 d}+\frac {4 a^{3} b \cot \left (d x +c \right )}{d}+4 a^{3} b x +\frac {4 a^{3} b c}{d}-\frac {3 a^{2} b^{2} \left (\cot ^{2}\left (d x +c \right )\right )}{d}-\frac {6 a^{2} b^{2} \ln \left (\sin \left (d x +c \right )\right )}{d}-4 a \,b^{3} x -\frac {4 \cot \left (d x +c \right ) a \,b^{3}}{d}-\frac {4 a \,b^{3} c}{d}+\frac {b^{4} \ln \left (\sin \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+b*tan(d*x+c))^4,x)

[Out]

-1/4*a^4*cot(d*x+c)^4/d+1/2*a^4*cot(d*x+c)^2/d+a^4*ln(sin(d*x+c))/d-4/3*a^3*b*cot(d*x+c)^3/d+4*a^3*b*cot(d*x+c
)/d+4*a^3*b*x+4/d*a^3*b*c-3/d*a^2*b^2*cot(d*x+c)^2-6/d*a^2*b^2*ln(sin(d*x+c))-4*a*b^3*x-4/d*cot(d*x+c)*a*b^3-4
/d*a*b^3*c+1/d*b^4*ln(sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 149, normalized size = 1.06 \[ \frac {48 \, {\left (a^{3} b - a b^{3}\right )} {\left (d x + c\right )} - 6 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (\tan \left (d x + c\right )\right ) - \frac {16 \, a^{3} b \tan \left (d x + c\right ) + 3 \, a^{4} - 48 \, {\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{3} - 6 \, {\left (a^{4} - 6 \, a^{2} b^{2}\right )} \tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{4}}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^4,x, algorithm="maxima")

[Out]

1/12*(48*(a^3*b - a*b^3)*(d*x + c) - 6*(a^4 - 6*a^2*b^2 + b^4)*log(tan(d*x + c)^2 + 1) + 12*(a^4 - 6*a^2*b^2 +
 b^4)*log(tan(d*x + c)) - (16*a^3*b*tan(d*x + c) + 3*a^4 - 48*(a^3*b - a*b^3)*tan(d*x + c)^3 - 6*(a^4 - 6*a^2*
b^2)*tan(d*x + c)^2)/tan(d*x + c)^4)/d

________________________________________________________________________________________

mupad [B]  time = 3.97, size = 150, normalized size = 1.06 \[ \frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a^4-6\,a^2\,b^2+b^4\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,{\left (b+a\,1{}\mathrm {i}\right )}^4}{2\,d}-\frac {{\mathrm {cot}\left (c+d\,x\right )}^4\,\left ({\mathrm {tan}\left (c+d\,x\right )}^3\,\left (4\,a\,b^3-4\,a^3\,b\right )-{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (\frac {a^4}{2}-3\,a^2\,b^2\right )+\frac {a^4}{4}+\frac {4\,a^3\,b\,\mathrm {tan}\left (c+d\,x\right )}{3}\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,{\left (a+b\,1{}\mathrm {i}\right )}^4}{2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^5*(a + b*tan(c + d*x))^4,x)

[Out]

(log(tan(c + d*x))*(a^4 + b^4 - 6*a^2*b^2))/d - (log(tan(c + d*x) + 1i)*(a*1i + b)^4)/(2*d) - (cot(c + d*x)^4*
(tan(c + d*x)^3*(4*a*b^3 - 4*a^3*b) - tan(c + d*x)^2*(a^4/2 - 3*a^2*b^2) + a^4/4 + (4*a^3*b*tan(c + d*x))/3))/
d - (log(tan(c + d*x) - 1i)*(a + b*1i)^4)/(2*d)

________________________________________________________________________________________

sympy [A]  time = 5.83, size = 252, normalized size = 1.79 \[ \begin {cases} \tilde {\infty } a^{4} x & \text {for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (a + b \tan {\relax (c )}\right )^{4} \cot ^{5}{\relax (c )} & \text {for}\: d = 0 \\- \frac {a^{4} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {a^{4} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + \frac {a^{4}}{2 d \tan ^{2}{\left (c + d x \right )}} - \frac {a^{4}}{4 d \tan ^{4}{\left (c + d x \right )}} + 4 a^{3} b x + \frac {4 a^{3} b}{d \tan {\left (c + d x \right )}} - \frac {4 a^{3} b}{3 d \tan ^{3}{\left (c + d x \right )}} + \frac {3 a^{2} b^{2} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} - \frac {6 a^{2} b^{2} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} - \frac {3 a^{2} b^{2}}{d \tan ^{2}{\left (c + d x \right )}} - 4 a b^{3} x - \frac {4 a b^{3}}{d \tan {\left (c + d x \right )}} - \frac {b^{4} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {b^{4} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+b*tan(d*x+c))**4,x)

[Out]

Piecewise((zoo*a**4*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(a + b*tan(c))**4*cot(c)**5, E
q(d, 0)), (-a**4*log(tan(c + d*x)**2 + 1)/(2*d) + a**4*log(tan(c + d*x))/d + a**4/(2*d*tan(c + d*x)**2) - a**4
/(4*d*tan(c + d*x)**4) + 4*a**3*b*x + 4*a**3*b/(d*tan(c + d*x)) - 4*a**3*b/(3*d*tan(c + d*x)**3) + 3*a**2*b**2
*log(tan(c + d*x)**2 + 1)/d - 6*a**2*b**2*log(tan(c + d*x))/d - 3*a**2*b**2/(d*tan(c + d*x)**2) - 4*a*b**3*x -
 4*a*b**3/(d*tan(c + d*x)) - b**4*log(tan(c + d*x)**2 + 1)/(2*d) + b**4*log(tan(c + d*x))/d, True))

________________________________________________________________________________________